If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4v^2+6v-2=0
a = -4; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·(-4)·(-2)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2}{2*-4}=\frac{-8}{-8} =1 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2}{2*-4}=\frac{-4}{-8} =1/2 $
| 8x+3-x=17 | | w-4/4=3/10 | | 3/5(2m-10)=2/5+10 | | -4x-6=-8x | | 4t=-6+2 | | 2m-13=-8m+27* | | 17.5x=184 | | 3w=12+w | | 3x-12=16+5x | | 4(x+2)/6=2x-3 | | 14/3x=14 | | -5.2=12.3+x/7 | | 0=-6x+3 | | 12-9h=8-4h | | 3-11p=9+5p | | 22=x/2=9 | | 2b+b=180 | | -3d=-4−4d | | 3(1+x)-12x=-6(x-4) | | p+8=30 | | -9+7u=6u | | -4l+19=11 | | 2(x+1)+5=5x-3(-3+x) | | 3x^2-12x^2+12x=0 | | -4(t-5)+8t=9t-2 | | ×+69=x+129 | | 05x+40=50 | | 0.136x0.2=1/33 | | 8x+64+1=-5x | | .10x+25=50 | | 5(3x+3)+6=15x+21 | | (3j+2)/4=(7j-2)/6 |